Home > Banco de Questões > Matemática >

Geometria Analı́tica

Lista de 16 exercícios de Matemática com gabarito sobre o tema Geometria Analı́tica (Plano, Reta e Circunferência) com questões do Enem.



1.(Enem PPL 2019) Na anestesia peridural, como a usada nos partos, o médico anestesista precisa introduzir uma agulha nas costas do paciente, que atravessará várias camadas de tecido até chegar a uma região estreita, chamada espaço epidural, que envolve a medula espinhal. A agulha é usada para injetar um líquido anestésico, e a força que deve ser aplicada à agulha para fazê-la avançar através dos tecidos é variável.

A figura é um gráfico do módulo F da força (em newton) em função do deslocamento x da ponta da agulha (em milímetro) durante uma anestesia peridural típica.

Considere que a velocidade de penetração da agulha deva ser a mesma durante a aplicação da anestesia e que a força aplicada à agulha pelo médico anestesista em cada ponto deve ser proporcional à resistência naquele ponto.

Na anestesia peridural, como a usada nos partos, o médico anestesista precisa introduzir uma agulha nas costas do paciente, que atravessará várias camadas de tecido até chegar a uma região estreita, chamada espaço epidural, que envolve a medula espinhal.

Com base nas informações apresentadas, a maior resistência à força aplicada observa-se ao longo do segmento

  1. AB.
  2. FG.
  3. EF.
  4. GH.
  5. HI.

Geometria Analítica

2. (Enem 2019) Um grupo de países criou uma instituição responsável por organizar o Programa Internacional de Nivelamento de Estudos (PINE) com o objetivo de melhorar os índices mundiais de educação. Em sua sede foi construída uma escultura suspensa, com a logomarca oficial do programa, em três dimensões, que é formada por suas iniciais, conforme mostrada na figura.

Um grupo de países criou uma instituição responsável por organizar o Programa Internacional de Nivelamento de Estudos (PINE) com o objetivo de melhorar os índices mundiais de educação.

Essa escultura está suspensa por cabos de aço, de maneira que o espaçamento entre letras adjacentes é o mesmo, todas têm igual espessura e ficam dispostas em posição ortogonal ao solo, como ilustrado a seguir

Um grupo de países criou uma instituição responsável por organizar o Programa Internacional de Nivelamento de Estudos (PINE) com o objetivo de melhorar os índices mundiais de educação.

Ao meio-dia, com o sol a pino, as letras que formam essa escultura projetam ortogonalmente suas sombras sobre o solo.

A sombra projetada no solo é

  1. Um grupo de países criou uma instituição responsável por organizar o Programa Internacional de Nivelamento de Estudos (PINE) com o objetivo de melhorar os índices mundiais de educação.
  2. Um grupo de países criou uma instituição responsável por organizar o Programa Internacional de Nivelamento de Estudos (PINE) com o objetivo de melhorar os índices mundiais de educação.
  3. Um grupo de países criou uma instituição responsável por organizar o Programa Internacional de Nivelamento de Estudos (PINE) com o objetivo de melhorar os índices mundiais de educação.
  4. Um grupo de países criou uma instituição responsável por organizar o Programa Internacional de Nivelamento de Estudos (PINE) com o objetivo de melhorar os índices mundiais de educação.
  5. Um grupo de países criou uma instituição responsável por organizar o Programa Internacional de Nivelamento de Estudos (PINE) com o objetivo de melhorar os índices mundiais de educação.

3. (Enem 2018) Para criar um logotipo, um profissional da área de design gráfico deseja construí-lo utilizando o conjunto de pontos do plano na forma de um triângulo, exatamente como mostra a imagem.

 Para criar um logotipo, um profissional da área de design gráfico deseja construí-lo utilizando o conjunto de pontos do plano na forma de um triângulo, exatamente como mostra a imagem.

Para construir tal imagem utilizando uma ferramenta gráfica, será necessário escrever algebricamente o conjunto que representa os pontos desse gráfico.

Esse conjunto é dado pelos pares ordenados (x ; y) e começar estilo tamanho matemático 14px reto números naturais fim do estilo x começar estilo tamanho matemático 14px reto números naturais fim do estilo, tais que

  1. 0 ≤ x ≤ y ≤ 10
  2. 0 ≤ y ≤ x ≤ 10
  3. 0 ≤ x ≤ 10, 0 ≤ y ≤ 10
  4. 0 ≤ x + y ≤ 10
  5. 0 ≤ x + y ≤ 20

4. (Enem 2018) Um jogo pedagógico utiliza-se de uma interface algébrico-geométrica do seguinte modo: os alunos devem eliminar os pontos do plano cartesiano dando “tiros”, seguindo trajetórias que devem passar pelos pontos escolhidos. Para dar os tiros, o aluno deve escrever em uma janela do programa a equação cartesiana de uma reta ou de uma circunferência que passa pelos pontos e pela origem do sistema de coordenadas. Se o tiro for dado por meio da equação da circunferência, cada ponto diferente da origem que for atingido vale 2 pontos. Se o tiro for dado por meio da equação de uma reta, cada ponto diferente da origem que for atingido vale 1 ponto. Em uma situação de jogo, ainda restam os seguintes pontos para serem eliminados: A(0 ; 4), 6(4 ; 4), C(4 ; 0), D(2 ; 2) e E(0; 2).

Um jogo pedagógico utiliza-se de uma interface algébrico-geométrica do seguinte modo: os alunos devem eliminar os pontos do plano cartesiano dando “tiros”, seguindo trajetórias que devem passar pelos pontos escolhidos.

Passando pelo ponto A, qual equação forneceria a maior pontuação?

  1. x = 0
  2. y = 0
  3. x² + y² =16
  4. x² + (y-2)² = 4
  5. (x - 2)² + (y - 2)² = 8

5. (Enem 2018) Para apagar os focos A e B de um incêndio, que estavam a uma distância de 30 m um do outro, os bombeiros de um quartel decidiram se posicionar de modo que a distância de um bombeiro ao foco A, de temperatura mais elevada, fosse sempre o dobro da distância desse bombeiro ao foco B, da temperatura menos elevada.

Nestas condições, a maior distância, em metro, que dois bombeiros poderiam ter entre eles é

  1. 30
  2. 40
  3. 45
  4. 60
  5. 68

6. (Enem 2018) Para apagar os focos A e B de um incêndio, que estavam a uma distância de 30 m um do outro, os bombeiros de um quartel decidiram se posicionar de modo que a distância de um bombeiro ao foco A, de temperatura mais elevada, fosse sempre o dobro da distância desse bombeiro ao foco B, da temperatura menos elevada.

Nestas condições, a maior distância, em metro, que dois bombeiros poderiam ter entre eles é

  1. 30
  2. 40
  3. 45
  4. 60
  5. 68

7. (Enem 2017) Um menino acaba de se mudar para um novo bairro e deseja ir à padaria. Pediu ajuda a um amigo que lhe forneceu um mapa com pontos numerados, que representam cinco locais de interesse, entre os quais está a padaria. Além disso, o amigo passou as seguintes instruções: a partir do ponto em que você se encontra, representado pela letra X, ande para oeste, vire à direita na primeira rua que encontrar, siga em frente e vire à esquerda na próxima rua. A padaria estará logo a seguir

Um menino acaba de se mudar para um novo bairro e deseja ir à padaria. Pediu ajuda a um amigo que lhe forneceu um mapa com pontos numerados, que representam cinco locais de interesse, entre os quais está a padaria.

A padaria está representada pelo ponto numerado com

  1. 1
  2. 2
  3. 3
  4. 4
  5. 5

8. (Enem 2017) O fisiologista inglês Archibald Vivian Hill propôs, em seus estudos, que a velocidade V de contração de um músculo ao ser submetido a um peso p é dada pela equação (p + a) (v + b) = K, com a, b e K constantes.

Um fisioterapeuta, com o intuito de maximizar o efeito benéfico dos exercícios que recomendaria a um de seus pacientes, quis estudar essa equação e a classificou desta forma:

TIPO DE CURVA
Semirreta oblíqua
Semirreta horizontal
Ramo de parábola
Arco de circunferência
Ramo de hipérbole

O fisioterapeuta analisou a dependência entre v e p na equação de Hill e a classificou de acordo com sua representação geométrica no plano cartesiano, utilizando o par de coordenadas (p. V). Admita que K > 0.

Disponível em: http://rspb.royalsocietypublishing.org. Acesso em: 14jul2015 (adaptado).

O gráfico da equação que o fisioterapeuta utilizou para maximizar o efeito dos exercícios é do tipo

  1. Semirreta oblíqua.
  2. semirreta horizontal.
  3. ramo de parábola.
  4. arco de circunferência.
  5. ramo de hipérbole.

9. (Enem 2016) Uma família resolveu comprar um imóvel num bairro cujas ruas estão representadas na figura. As ruas com nomes de letras são paralelas entre si e perpendiculares às ruas identificadas com números. Todos os quarteirões são quadrados, com as mesmas medidas, e todas as ruas têm a mesma largura, permitindo caminhar somente nas direções vertical e horizontal. Desconsidere a largura das ruas.

 Uma família resolveu comprar um imóvel num bairro cujas ruas estão representadas na figura.

A família pretende que esse imóvel tenha a mesma distância de percurso até o local de trabalho da mãe, localizado na rua 6 com a rua E, o consultório do pai, na rua 2 com a rua E, e a escola das crianças, na rua 4 com a rua A.

Com base nesses dados, o imóvel que atende as pretensões da família deverá ser localizado no encontro das ruas

  1. 3 e C
  2. 4 e C
  3. 4 e D
  4. 4 e E
  5. 5 e C

10. (Enem 2015, 2ª aplicação) Considere que os quarteirões de um bairro tenham sido desenhados no sistema cartesiano, sendo a origem o cruzamento das duas ruas mais movimentadas desse bairro. Nesse desenho, as ruas têm suas larguras desconsideradas e todos os quarteirões são quadrados de mesma área e a medida de seu lado é a unidade do sistema.

A seguir há uma representação dessa situação, em que os pontos A, B, C e D representam estabelecimentos comerciais desse bairro.

 Considere que os quarteirões de um bairro tenham sido desenhados no sistema cartesiano, sendo a origem o cruzamento das duas ruas mais movimentadas desse bairro.

Suponha que uma rádio comunitária, de fraco sinal, garante área de cobertura para todo estabelecimento que se encontre num ponto cujas coordenadas satisfaçam à inequação: x² + y² – 2x – 4y – 31 ≤ 0.

A fim de avaliar a qualidade do sinal, e proporcionar uma futura melhora, a assistência técnica da rádio realizou uma inspeção para saber quais estabelecimentos estavam dentro da área de cobertura, pois estes conseguem ouvir a rádio enquanto os outros não.

Os estabelecimentos que conseguem ouvir a rádio são apenas

  1. A e C.
  2. B e C.
  3. B e D.
  4. A, B e C.
  5. B, C e D.

11. (Enem 2016) Para uma feira de ciências, dois projéteis de foguetes, A e B, estão sendo construídos para serem lançados. O planejamento é que eles sejam lançados juntos, com o objetivo de o projétil B interceptar o A quando esse alcançar sua altura máxima. Para que isso aconteça, um dos projéteis descreverá uma trajetória parabólica, enquanto o outro irá descrever uma trajetória supostamente retilínea. O gráfico mostra as alturas alcançadas por esses projéteis em função do tempo, nas simulações realizadas.

Para uma feira de ciências, dois projéteis de foguetes, A e B, estão sendo construídos para serem lançados.

Com base nessas simulações, observou-se que a trajetória do projétil B deveria ser alterada para que o objetivo fosse alcançado.

Para alcançar o objetivo, o coeficiente angular da reta que representa a trajetória de B deverá

  1. diminuir em 2 unidades
  2. diminuir em 4 unidades
  3. aumentar em 2 unidades.
  4. aumentar em 4 unidades.
  5. aumentar em 8 unidades.

12. (Enem 2016) Uma região de uma fábrica deve ser isolada, pois nela os empregados ficam expostos a riscos de acidentes. Essa região está representada pela porção de cor cinza (quadrilátero de área S) na figura.

Para que os funcionários sejam orientados sobre a localização da área isolada, cartazes informativos serão afixados por toda fábrica. Para confeccioná-los, um programador utilizará um software que permite desenhar essa região a partir de um conjunto de desigualdades algébricas.

As desigualdades que devem ser utilizadas no referido software, para o desenho da região de isolamento, são

  1. 3y – x ≤ 0; 2y – x ≥ 0; y ≤ 8; x ≤ 9
  2. 3y – x ≤ 0; 2y – x ≥ 0; y ≤ 9; x ≤ 8
  3. 3y – x ≥ 0; 2y – x ≤ 0; y ≤ 9; x ≤ 8
  4. 4y – 9x ≤ 0; 8y – 3x ≥ 0; y ≤ 8; x ≤ 9
  5. 4y – 9x ≤ 0; 8y – 3x ≥ 0; y ≤ 9; x ≤ 8

13. (Enem 2015) A figura representa a vista superior de uma bola de futebol americano, cuja forma é um elipsoide obtido pela rotação de uma elipse em torno do eixo das abscissas. Os valores a e b são, respectivamente, a metade do seu comprimento horizontal e a metade do seu comprimento vertical. Para essa bola, a diferença entre os comprimentos horizontal e vertical é igual à metade do comprimento vertical.

A figura representa a vista superior de uma bola de futebol americano, cuja forma é um elipsoide obtido pela rotação de uma elipse em torno do eixo das abscissas.

Considere que o volume aproximado dessa bola é dado por V = 4ab².

O volume dessa bola, em função apenas de b, é dado por

  1. 8b³
  2. 6b³
  3. 5b³
  4. 4b³
  5. 2b³

14. (Enem 2015) Devido ao aumento do fluxo de passageiros, uma empresa de transporte coletivo urbano está fazendo estudos para a implantação de um novo ponto de parada em uma determinada rota. A figura mostra o percurso, indicado pelas setas, realizado por um ônibus nessa rota e a localização de dois de seus atuais pontos de parada, representados por P e Q.

 Considere um ponto P em uma circunferência de raio r no plano cartesiano.

Os estudos indicam que o novo ponto T deverá ser instalado, nesse percurso, entre as paradas já existentes P e Q, de modo que as distâncias percorridas pelo ônibus entre os pontos P e T e entre os pontos T e Q sejam iguais.

De acordo com os dados, as coordenadas do novo ponto de parada são

  1. (290 ; 20).
  2. (410 ; 0).
  3. (410 ; 20).
  4. (440 ; 0).
  5. (440 ; 20).

15. (Enem 2009) Considere um ponto P em uma circunferência de raio r no plano cartesiano. Seja Q a projeção ortogonal de P sobre o eixo x, como mostra a figura, e suponha que o ponto P percorra, no sentido anti-horário, uma distância d≤ sobre a circunferência.


Considere um ponto P em uma circunferência de raio r no plano cartesiano

Então, o ponto Q percorrerá, no eixo x, uma distância dada por

  1. 1 - s e n d r
  2. 1 - c o s d r
  3. 1 - t g d r
  4. r s e n r d
  5. r c o s r d

16. (Enem 2013) Durante uma aula de Matemática, o professor sugere aos alunos que seja fixado um sistema de coordenadas cartesianas (x, y) e representa na lousa a descrição de cinco conjuntos algébricos, I, II, III, IV e V, como se segue:

(I) é a circunferência de equação x2 + y2 = 9;

(II) é a parábola de equação y = −x2 − 1, com x variando de -1 a 1;

(III) é o quadrado formado pelos vértices (-2, 1), (-1, 1), (-1, 2) e (-2, 2);

(IV) é o quadrado formado pelos vértices (1, 1), (2, 1), (2, 2) e (1, 2);

(V) é o ponto (0, 0).

A seguir, o professor representa corretamente os cinco conjuntos sobre uma mesma malha quadriculada, composta de quadrados com lados medindo uma unidade de comprimento, cada, obtendo uma figura. Qual destas figuras foi desenhada pelo professor?

  1. durante uma aula de Matemática, o professor sugere aos alunos que seja fixado um sistema de coordenadas cartesianas (x, y) e representa na lousa a descrição de cinco conjuntos algébricos, I, II, III, IV e V, como se segue
  2. durante uma aula de Matemática, o professor sugere aos alunos que seja fixado um sistema de coordenadas cartesianas (x, y) e representa na lousa a descrição de cinco conjuntos algébricos, I, II, III, IV e V, como se segue
  3. durante uma aula de Matemática, o professor sugere aos alunos que seja fixado um sistema de coordenadas cartesianas (x, y) e representa na lousa a descrição de cinco conjuntos algébricos, I, II, III, IV e V, como se segue
  4. durante uma aula de Matemática, o professor sugere aos alunos que seja fixado um sistema de coordenadas cartesianas (x, y) e representa na lousa a descrição de cinco conjuntos algébricos, I, II, III, IV e V, como se segue
  5. durante uma aula de Matemática, o professor sugere aos alunos que seja fixado um sistema de coordenadas cartesianas (x, y) e representa na lousa a descrição de cinco conjuntos algébricos, I, II, III, IV e V, como se segue
.